
Model-based Dev. Tool

MC-Verifier
 Back-to-Back (B2B) Test Tool for meeting ISO 26262 requirements
 Model-to-Model, Model-to-Software, Model-to-Target-Code B2B Testing
 Identify test error location (subsystem) on Simulink model
 Trace test errors over time on Simulink model
 Code Coverage (Statement, Branch, MC/DC)

“MC-Verifier” is an integrated test tool for performing model-based development Back-to-Back testing. Debug and verify
consistency between model, software, and target code implementation at a variety of development phases.

Integrated Model/Code Back-to-Back Test Tool

Model, Software & Target Code
B2B Testing, Evaluation & Reporting
MC-Verifier can perform B2B testing with models (MIL), software (SIL),
& target code (PIL). Evaluate B2B test results to detect and report error
locations. Import test cases created from other MBD tools for B2B
testing.
Note: GAIO’s own MPU simulator is built-in for target code testing. Test
hardware is not required.

MATLAB/Simulink Integration
MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features
can be executed from the MATLAB/Simulink GUI, command-line or
MATLAB scripts.

Identify Error Location on Simulink model
The output values of all model subsystem signals, and all code
variables are recorded during testing. After testing, the model signal and
code variable output values can be analyzed over time in order to locate
errors.

The acceptable error range can be specified by percent. Subsystems
that exceed the acceptable error range will be highlighted on the
Simulink model in order to efficiently locate and correct errors. This
feature for locating errors even works for models that include feedbacks.

[List of Terms] MIL = Model In the Loop
MC= Model and Code SIL = Software (C code) In the Loop
B2B = Back-to-Back PIL = Processor (Object code) In the Loop

Code Debugging Features
Code debugging features included with the MPU simulator can be used
to analyze errors for model-to-target-code tests. Set breakpoints in the
code, verifying changes in variable values, register values, memory
values, etc.

Code Coverage
Code coverage (statement, Branch, MC/DC) can be measured for
model-to-target-code tests. Detect code structure issues through code
coverage testing and fulfill ISO 26262 code coverage requirements.

Model-Based Development - B2B Test Use Cases

High-Abstraction Level & Low-Abstraction
Level Specification Models

Perform B2B testing with the high-abstraction level
and low-abstraction level specification models for
verification. Evaluate behavior consistency between
models when creating control specification.

Specification Model,
Implementation Model & C Code

Perform B2B testing with the low-abstraction level
specification model, implementation model and auto-
generated code for verification. Detect C code
generation related issues.

Implementation Model & Target Code

Perform B2B testing with the implementation model and
the target code during the implementation phase to
evaluate in a target environment as recommended by
ISO 26262. Detect MPU structure, cross compiler
optimization and other target code related issues.

Control System Designers
(MIL to MIL)

-Verify MATLAB/Simulink algorithm design
-Evaluate behavior consistency between models

Code Developers
(MIL to MIL to SIL)

-Verify floating-point to fixed-point conversion
-Verify model modifications for code generation
-Detect auto-coder related issues

Code Implementers / Testers
(MIL to PIL)

-Find MPU and compiler related issues, rounding errors
-Measure code coverage
-Create ISO 26262 compliant test reports

Specification Model
(Low-abstraction level)

Implementation
Model

C Code

Target Code

Convert

Auto-code

Compile

B2B

B2B

B2B

Identify Errors
(on Simulink model)

Debug
Source Code

Measure
Code Coverage

Model, Software, Target-code
B2B Test Execution and

Test Report Creation

MC-Verifier B2B Test Framework

*Model = MATLAB/Simulink model

Specification Model
(High-abstraction level)

Design
B2B

ISO 26262
IEC 61508
Certified

Sales Division
Tennouzu First Tower 25F
2-2-4 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002 Japan
E-mail: info@gaio.co.jp WEB: http://www.gaio.com/

Feb. 2017

MC-Verifier Features (In development, actual features may differ)

MATLAB/Simulink Integration

MC-Verifier is integrated with MATLAB/Simulink. MC-Verifier features
such as model, software, target-code B2B testing and report
generation can be executed from the MATLAB/Simulink GUI,
command-line or MATLAB scripts.

Code Debugging

Target code B2B tests are executed on GAIO’s MPU simulator
(Instruction Set Simulator). Test and debug the target code without
needing actual hardware. Set breakpoints in the code, verifying changes
in variable values, register values, memory values, etc.

Error Location Analysis

The output values of signal lines and code variables for the selected
subsystem are recorded during testing. After testing, signal line and
code variable values can be analyzed over time in order to locate errors.
This feature for locating errors even works for models that include
feedbacks.

Analyze the Error Range

Evaluate the error range over time for model signal lines and code
variable values. Set the allowed error range by percent, then graph and
highlight items that exceed the allowed error range.

Blocks are highlighted according to error range

Select the time on the graph

0.01s

0.02s

Block highlighted colors indicate the degree of error
(From small to large: BLUE - GREEN - RED)

Use to locate the cause of errors when they first occur

Code Coverage

Code coverage (statement, Branch, MC/DC) can be measured for
model-to-target-code tests. In this way, detect code structure issues
through code coverage testing and fulfill ISO 26262 code coverage
requirements.

Import Test Cases from other MBD Tools

Test case data created from other MDB tools can be easily imported for
B2B testing in CSV, M-file and other general formats.

Test Reports

Test reports including B2B test results, tested subsystem/function list
and code coverage results can be output to XML, HTML, CSV, XLS(X)
formats. Easily create test reports needed for functional safety
certification.

Error Location Found

